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Abstract

The dynamics of fronts, or kinks, in dispersive media with gain and losses is considered. It

is shown that the front parameters, such as the velocity and width, depend on initial conditions.

This result is not typical for dissipative systems. For exponentially decreasing initial conditions, the

relations for the front parameters are found. A presence of the global bifurcation, when a soliton

solution is replaced by the front solution, is demonstrated. It is also shown that in order to observe

fronts, the front velocity should be larger than the characteristic velocity of the modulational

instability.
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I. INTRODUCTION

In conservative media, light can propagate as a stable non-diverging beam due to a balance

between diffraction (dispersion) and nonlinearity. Such a localized wave with a bell-shaped

intensity profile in the transverse direction corresponds to a soliton, see e.g. [1, 2]. Solitons

are investigated actively as important objects of nonlinear optics.

Another type of localized waves, namely, fronts (shock waves, kinks, transition waves) are

studied less in optics [3–6]. A front is a local variation of the field that connects two different

uniform states [7–12]. Often, one state is stable, while the other is unstable (metastable).

Then, the stable state expands into the unstable one, and the front corresponds to a tran-

sition region between the two states.

The dynamics of fronts in dissipative media is a subject of extensive studies in physics [7–

12]. An important model, that describe front propagation, is the nonlinear diffusion (ND)

equation [7, 10, 11]:

∂zu−D∂2xu+ f(u) = 0, (1)

where u(x, z) is the real-valued field (e.g. pressure or concentration), x and z are the spatial

and evolutional (time) coordinates, respectively, D is the diffusion coefficient, and f(u) is

a nonlinear function. A well-known example of the ND equation is the Fisher-Kolmogorov

equation [13, 14], where f(u) = u(u − 1). The study of this equation, started in the first

half of the twentieth century, has revealed the main properties of fronts in diffusive media.

Further development of the theory was connected, in particular, with the study of complex-

valued fields and the combined effect of diffusion and dispersion. The corresponding model

can be written as

i∂zψ + (βr + iβi)∂
2
xψ + F (ψ, ∂xψ, ∂

2
xψ . . .) = 0, (2)

where ψ(x, z) is a complex field, F is a function of ψ and it’s derivatives, and βr (βi)

characterizes dispersion (diffusion). A well studied example of model (2) is the complex

Ginzburg-Landau equation that describes pattern formation in a variety of physical sys-

tems [1, 7, 9, 12].

Typically, model (2), as well as (1), possesses a family of front solutions with different

spatial distributions and velocities. However, many particular examples of the model demon-

strate the following property. A wide class of initial conditions evolve into a well-defined
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front with a specific velocity v⋆. This velocity depends only on the parameters of the model.

In other words, the system “selects” a particular front from a variety of all possible fronts.

There are different approaches for calculation of the parameters of the selected front. The

most developed approach is the theory of marginal stability (MS) that states the following [7,

8]. Let an evolutional equation in form (2) has a front solution. Then the selected front

velocity v⋆ is found from the dispersion relation of the linearized Eq. (2), ω = ω(k) ≡
ωr(k) + i ωi(k). Namely [7, 8],

v⋆ = ωi(k
⋆)/k⋆i , (3)

where the complex wavenumber k⋆ ≡ k⋆r + i k⋆i is obtained from

dω(k)

dk

∣

∣

∣

∣

∣

k=k⋆

= ωi(k
⋆)/k⋆i . (4)

The result (3) is not proven rigorously, but it works for many types of evolutional equations.

In this paper, we analyze a limit of purely dispersive media without diffusion. This

situation is typical in optics. We consider a beam propagation in media with linear gain

and nonlinear losses (two-photon absorption). Such parameters are characteristic for laser

systems. We demonstrate that at some conditions, the beam expansion in such media is

related to the propagation of two fronts moving in opposite directions. Then, the beam

evolution can be restored, to some extent, from of the front parameters. Unfortunately, the

theory of MS is not useful for analysis of fronts in media with pure dispersion. We find that

the front parameters in dispersive media depend not only on the the system parameters, but

also on initial conditions, see Sec. II.

The optical beam dynamics in nonlinear media is described by the generalized nonlinear

Schrödinger equation [1, 2]

i∂zψ +
β

2
∂2xψ + (γ + iγa)|ψ|2ψ + iαψ = 0 , (5)

where ψ(x, z) is the envelope of the electric field, x and z are the transverse and longitudinal

coordinates, respectively, β is the diffraction (dispersion) coefficient, γ is the Kerr nonlin-

earity parameter, γa > 0 characterizes nonlinear absorption, and α < 0 is the parameter of

linear gain. Equation (5) can be normalized such that β = γ = 1, therefore we use these

values in all numerical simulations.

One can distinguish two basic scenarios of the beam propagation in media with gain and

losses, see Fig. 1. Let us consider, for example, a case of low initial peak intensity. Then, the
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peak intensity of the beam increases initially due to linear gain. This increase is limited by

nonlinear dissipation. Intensity near the beam center keeps at a constant value due to the

balance between the two effects, while intensity at the beam edges continues to rise. This

process results in a formation of two fronts moving in opposite directions, see Fig. 1(a). One

can see that at large z, fronts move with constant velocities as stationary waves.

In the second scenario, Fig. 1(b), the initial beam breaks up into several pulses that in

turn generate new pulses and so on. Then, a lattice of pulses is created. That non-uniform

region expands into the unstable uniform one. In fact, a lattice of pulses is formed in the

first scenario as well, see Fig. 1(a). The first (second) scenario is realized when the front

velocity is larger (smaller) than that of the expansion of the lattice of pulses. In this paper

we are focused mainly on the first scenario, where the asymptotic dynamics of the beam is

determined by the front parameters. We provide also a condition that separates the two

types of the dynamics, see Sec. III.

The paper is organized as follows. The dynamical system for stationary waves is analyzed

in Sec. II. In particular, the equations for the front parameters are obtained there. Section III

discusses the condition of the front existence and comparison with numerical simulations.

The results are summarized in Sec. IV.

II. STATIONARY WAVES: FRONTS

Fronts in Fig. 1 propagate with constant velocity, therefore in this section we study

stationary wave solutions of Eq. (5). We follow the standard analysis described, for example,

in Ref. [7]. We look for solutions in the following form:

ψ(x, z) = a(ξ) exp[iφ(ξ)− iµz)], ξ ≡ x− vz, (6)

where v is the wave velocity, and µ is the propagation constant. Substitution of Eq. (6) into

Eq. (5) results in the dynamical system for the wave parameters:

a′ = pa,

p′ = q2 − p2 − 2

β

(

vq + µ+ γa2
)

,

q′ = −2pq +
2

β

(

vp− α− γaa
2
)

, (7)
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where prime means d/dξ, p ≡ a′/a, and q = φ ′. There are two types of fixed points of

Eqs. (7), namely, those with vanishing amplitude (“linear” points), and those with finite

amplitude (“nonlinear” points) (cf. [7]):

aL = 0, pL = α/(v − β qL),

qL =
1

β

[

v ±
√

b+
√
b2 + α2

]

, (8)

b ≡ v2/2 + µβ,

and

aN =
√

−α/γa, pN = 0,

qN =
1

β

[

v ±
√

v2 + 2β (µ− αγ/γa)
]

(9)

Without loss of generality, only points with non-negative amplitude a ≥ 0 are considered.

The L-points each have one real eigenvalue and a pair of complex conjugate eigenvalues:

λ
(L)
1 = pL, λ

(L)
2,3 = −2pL ± 2i(qL − v/β). (10)

The eigenvalues of each N-point are determined from the following equation

λ3 + 4

(

c2N − αγ

βγa

)

λ− 8α

β
cN = 0, cN = qN − v/β. (11)

If cN > 0 (cN < 0) then Eq. (11) has one negative (positive) root and a pair of complex

conjugate roots with the positive (negative) real part.

A localized wave of Eq. (5) corresponds to a separatrix of dynamical system (7). In

particular, a pulse is described by a separatrix that connects two L-points, while a front is

described by a separatrix that connects the L- and N-points.

Equation (6) for stationary waves involves two unknown parameters, µ and v. In general,

there are no additional conditions that fix these parameters. The theory of MS is developed

for dissipative systems with both dispersion and diffusion, i.e. when parameter β is complex.

For purely dispersive media, when β in Eq. (5) is real, the theory of MS gives that any value

of v is possible.

For Eq. (5), we find a result which is not typical for dissipative systems. From our

analysis, we conclude that the front velocity is defined also by initial conditions. This is in

contrast to dissipative diffusive media, where v depends mainly on the system parameters.
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There are no regular methods to obtain the front parameters for arbitrary initial condi-

tions. Let us consider a particular initial condition ψ(x, 0) ≡ ψ0(x) = a0(x) exp[iφ0(x)] with

the following asymptotic behavior for amplitude a0(x) and phase φ0(x):

a0(x) ∼ e−|x|/w0, φ′
0(x) ∼ q0 at |x| → ∞. (12)

We find that a front developed from such initial conditions moves uniformly (see Fig. 1(a)),

while v and µ are defined from Eq. (8) with substitution

pL = ∓1/w0, qL = q0, (13)

or explicitly

v = ∓αw0 + βq0,

µ = ±αw0q0 −
β

2

(

q20 + 1/w2
0

)

. (14)

If a = 0 is at x = +∞ (x = −∞) then the upper (lower) sign in Eqs. (13) and (14) should be

chosen. Therefore, we come to an interesting result that the parameters of a stationary front

are governed by the parameters of the L-point only, or, in other words, by the parameters

of small-amplitude waves of Eq. (5).

In the equation for v, the second term is the phase velocity of linear waves. Then, the

first term is the relative velocity of the front in the corresponding reference frame. We use

this relative velocity in Sec. III.

Figure 2 shows good agreement between the values of the front velocity found from

numerical simulation of Eq. (5) and calculated using Eqs. (14). The initial condition is

taken as

ψ0(x) = aN sech(x/w0). (15)

The velocity is determined numerically for large z, when all transient processes are ended. All

points in Fig. 2 corresponds to the first scenario, when well-pronounced fronts are developed,

see Fig. 1(a). This scenario is realized for sufficiently large w0. This is discussed in detail in

Sec. III.

We extend our results further to beams with asymptotic behavior different from that

in Eq. (12). Let us consider for simplicity the real ψ0(x). If ψ0(x) decreases at |x| → ∞
slower (faster) than exponentially, then the emerging fronts move decelerating (accelerating).

Figure 3 represents such dynamics for a Gaussian pulse and a Lorentzian pulse, respectively.
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We obtain that even in these non-stationary cases, Eqs. (8) and (13) can still be used for

estimation of front parameters, provided that w0 and q0 are corresponding function of z.

The analysis above shows that media with linear amplification and nonlinear dissipation

can be used to distinguish beams with different asymptotics. A deviation of the beam’s

asymptotic behavior from an exponential one results in a deviation of the dependence of the

beam width on z from a straight line.

III. EXISTENCE OF FRONTS

There are two questions regarding the front existence. The first question is for what

values of the system parameters does the L-N separatrix exist. The second question is what

are the conditions for development of well-pronounced fronts. We discuss these question in

the present section.

There are no general methods to determine the existence of L-N separatrices. However,

our study uncover a notable property of system (7). It is known [15] that Eq. (5) has an exact

soliton solution. It corresponds to a L-L separatrix of Eqs. (7). On the other hand, numerical

simulations of Eq. (5) show unambiguously the existence of fronts, or L-N separatrices, for

other sets of the system parameters. Also, analysis of the eigenvalues of the L-points reveals

that only a single trajectory goes out of plane a = 0 from the L-point. It means that the L-L

and L-N separatrices cannot co-exist for a given set of the parameters. These facts indicate

a presence of a global bifurcation [16] in system (7), and therefore in Eq. (5). Namely,

depending on the parameters, the separatrix that starts from the L-point, ends at either the

another L-point or the N-point as ξ → ±∞, depending on the parameters. At the same

time, the local properties of model (7), in particular, the types of the fixed points, do not

change near the bifurcation.

Let us fix all the parameters in Eqs. (7), except of µ. We find that the L-L (L-N)

separatrix exists below (above) a bifurcation value µB. Figure 4 shows separatrices that go

from (to) the L- and N-points for different sets of the parameters. Only trajectories with

real eigenvalues, λL and λN , are shown. In order to reconstruct the heteroclinic trajectories

in Fig. 4, we take an initial condition at the vicinity of the fixed point along the direction

of the corresponding eigenvector. Each trajectory is checked by integrating backward on ξ

from the end point.
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In Fig. 4(a), µ = −0.7104 < µB, there is a separatrix that connects the two L-points. One

separatrix of the N-point is located in a region a > 1. The other separatrix of the N-point

goes to (from) a region a < 1, intertwining with the separatrix of the second N-point. In

Fig. 4(b), µ = 0.85 > µB, there is a separatrix that connect points of distinct types.

The value µ = −0.7104 for v = 0, α = −0.5 and γa = 0.5 corresponds to the exact soliton

solution [15]. The value µ = 0.85 ≡ µB(v = 0) for the same values of the other parameters

can be considered as an upper estimate of µB. We find µB(0) such that integrating forward

or backward on ξ from the one of the fixed point, the trajectory approaches the other fixed

point closer than 0.002 in absolute units. For other values of v, the bifurcation value µB (or

µB) can be calculated using the Galilean invariance, µB(v) = µB(0) − v2/2. We also find

that µB depends weakly on γa and almost linearly on α.

Now we turn to the question of the front development. First, we analyze real initial

conditions, i.e. without phase modulations. We find that the first scenario with well-defined

fronts is realized, when the front velocity is larger than the threshold velocity vth. The

threshold vth is the velocity of an expansion of the pulse region. The later, we believe, is

related to the modulational instability of the plane wave with amplitude aN . Namely, a tail

of a pulse plays a role of a perturbation of the uniform (L- or N-) state. Due to instability,

new pulses are generated from this perturbation resulting in the expansion of the pulse

region.

In order to estimate vth, we perform the analysis of the modulational instability of Eq. (5).

Let us consider the plane-wave solution of Eq. (5):

ψ(x, z) = aNe
iϕ(x), ϕ(x) = (kx− ωz), (16)

where

ω = βk2/2 + αγ/γa. (17)

Equation for small modulations u(x, z) can be obtained by substitution of the field in the

form

ψ = [aN + u(x, z)]eiϕ(x) (18)

into Eq. (5) and linearizing on u. Then, assuming u ∼ exp[i(Kx− Ωz)], one can derive the

dispersion relation of modulations:

Ω = βkK + iα±
[

−α2 +
βK2

2

(

βK2

2
+ 2

αγ

γa

)]1/2

. (19)
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It follows from the analysis of Eq. (19) that the plane wave (16) is unstable when |K| <
2[−αγ/(βγa)]1/2. The instability gain, g(K) ≡ Im[Ω(K)], has a maximum at K = Km =

[−2αγ/(βγa)]
1/2. Then the characteristic velocity vMI of the instability expansion is esti-

mated as a ratio of characteristic scales on z and x, namely the maximum of instability gain

and the corresponding wavenumber:

vMI ≡
g(Km)

Km

. (20)

Numerical simulations of Eq. (5) reveal that the threshold velocity can be determined as

vth = CvMI . Fitting of this equation with numerical data gives C ≈ 4.7 for β = γ = 1.

Then, well-defined fronts exist if

|αw0| > vth ≡ C

√

|α|βγa
2γ

(

√

1 + γ2/γ2a − 1
)

. (21)

This condition defines the parameter w0 of the initial profile that develops into two fronts.

The dependence of vth on the system parameters found numerically and using Eq. (21)

is shown in Fig. 5. For a given set of the system parameters, we change the initial width

w0, until the velocity of the emerging fronts exceeds the velocity of pulse spreading. The

threshold is not sharp, therefore the relative error of vth is in order 0.1. Nevertheless, we see

a good agreement between numerical results and Eq. (21). We also calculate numerically

the propagation constant µth of the front at v = vth. Taking µ as a control parameter, we

find that the formation of well-defined fronts occurs at larger µ than the global bifurcation,

µth > µB(vth).

An addition of the linear phase to initial conditions results in a constant shift of the whole

beam profile with the corresponding phase velocity. This is a manifestation of the Galilean

invariance discussed in Sec. II. In this case one should compare the relative front velocity

and vth, obtaining the same Eq. (21). Therefore, Eq. (21) is valid also for initial conditions

with linear modulation of the phase.

IV. CONCLUSION

We have demonstrated that in dispersive media with gain and losses, a beam propagates

for some set of the system parameters in a form of two fronts moving in opposite directions.

It has been shown that the front parameters depend on the system parameters, as well as on

9



initial conditions. The presence of global bifurcation of stationary waves in Eqs. (7) is found.

The threshold for development of fronts has been obtained. A possibility to use dispersive

media to distinguish beams with different asymptotic behavior has been suggested.
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FIG. 1. The beam dynamics described by Eq. (5) for initial condition ψ(x, 0) = sech(x/w0). Plots

show the evolution of the beam intensity |ψ|2. The parameters are (a) α = −0.5, γa = 0.5 and

w0 = 5, (b) α = −0.2, γa = 0.2 and w0 = 5.
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FIG. 2. The dependence of the front velocity on w0 for γa = 0.5 and different values of α. Points

correspond to result of numerical simulations of Eq. (5). Lines are found from Eqs. (14).
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FIG. 3. The dynamics of (a) a Gaussian pulse, ψ(x, 0) = exp[−(x/6)2/2], and (b) a Lorentzian

pulse, ψ(x, 0) = [(x/6)2 + 1]−1. The parameters are α = −0.5 and γa = 0.5.
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FIG. 4. Separatrices in the phase space of Eqs. (7) for v = 0, α = −0.5, and γa = 0.5. The L-points

(N-points) are labelled as L1 and L2 (N1 and N2). (a) The L-points are connected via the L-L

separatrix at µ = −0.7104. (b) There are two L-N separatrices at µ = 0.85. The dotted lines show

the projections of the separatrices on plane a = 0.

14



 0

 4

 8

 12

 16

 0  0.5  1  1.5  2  2.5
v

th
|α|

γ1= 0.1
γ1= 0.2
γ1= 0.5

FIG. 5. The threshold velocity as a function of |α| for different γa. Points correspond to numerical

simulations of Eq. (5). Lines correspond to Eq. (21), C ≈ 4.7.
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